Course Content
Intro on AI/ML & AWS sign up
Amazon SageMaker is a fully managed machine learning service provided by Amazon Web Services (AWS). It is designed to help data scientists and developers build, train, and deploy machine learning models at scale. With SageMaker, you can easily create, train, and deploy machine learning models without the need to manage the underlying infrastructure.
0/8
Popular Amazon models
Amazon Web Services (AWS) provides a rich set of services and tools for implementing artificial intelligence (AI) and machine learning (ML) solutions.
0/3
IAM & access mgmt
Amazon Identity and Access Management (IAM) is a service provided by Amazon Web Services (AWS) that enables you to manage user access and permissions to AWS resources. IAM allows you to create and manage user accounts, assign fine-grained permissions, and control access to AWS services and resources.
0/6
Amazon S3
Amazon Simple Storage Service (S3) is a highly scalable and durable object storage service provided by Amazon Web Services (AWS). It is designed to store and retrieve any amount of data from anywhere on the web. S3 offers a simple interface to store and retrieve data, making it a popular choice for storing a wide range of data types, including documents, images, videos, backups, logs, and more.
0/11
Introductions to Amazon Sagemaker
Amazon SageMaker is a fully managed machine learning service provided by Amazon Web Services (AWS). It is designed to simplify the process of building, training, and deploying machine learning models at scale. SageMaker provides a comprehensive set of tools and services that enable data scientists and developers to focus on the core tasks of developing and refining models, without the need to manage the underlying infrastructure.
0/8
Prepare data – Generate and label unstructured data
0/1
Build Models – SageMaker Studio notebooks
Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case.
0/4
Train and tune the model – Fully managed infrastructure at scale
Train and tune the model – High-performance distributed training
Train and tune the model – Built-in tools for the highest accuracy and lowest cost
Train and tune the model – Built-in tools for interactivity and monitoring
AWS – SageMaker For Data Scientists
About Lesson

SageMaker Data Wrangler offers a selection of 300+ prebuilt, PySpark-based data transformations so you can transform your data and scale your data preparation workflow without writing a single line of code.

Preconfigured transformations cover common use cases such as flattening JSON files, deleting duplicate rows, imputing missing data with mean or medium, one hot encoding, and time-series–specific transformers to accelerate the preparation of time-series data for ML. For your image data, SageMaker Data Wrangler offers common image augmentations (ie Blur, Enhance, Resize) and cleaning operations (ie drop corrupted images and duplicates). You can also author custom transformations in PySpark, SQL, and Pandas. SageMaker Data Wrangler offers image (imagaug, openCV) libraries for creating custom transforms for CV use cases and offers a rich library of code snippets to make it easier to author custom transformations.

Join the conversation